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ABSTRACT

Equatorial Atlantic variability is dominated by the Atlantic Nifio peaking during the boreal summer.
Studies have shown robust links of the Atlantic Nifo to fluctuations of the St. Helena subtropical anticyclone
and Benguela Nifio events. Furthermore, the occurrence of opposite sea surface temperature (SST) anomalies
in the eastern equatorial and southwestern extratropical South Atlantic Ocean (SAO), also peaking in boreal
summer, has recently been identified and termed the SAO dipole (SAOD). However, the extent to which and
how the Atlantic Nifio and SAOD are related remain unclear. Here, an analysis of historical observations
reveals the Atlantic Nifio as a possible intrinsic equatorial arm of the SAOD. Specifically, the observed
sporadic equatorial warming characteristic of the Atlantic Nifio (~0.4 K) is consistently linked to south-
western cooling (~—0.4 K) of the Atlantic Ocean during the boreal summer. Heat budget calculations show
that the SAOD is largely driven by the surface net heat flux anomalies while ocean dynamics may be of
secondary importance. Perturbations of the St. Helena anticyclone appear to be the dominant mechanism
triggering the surface heat flux anomalies. A weakening of the anticyclone will tend to weaken the prevailing
northeasterlies and enhance evaporative cooling over the southwestern Atlantic Ocean. In the equatorial region,
the southeast trade winds weaken, thereby suppressing evaporation and leading to net surface warming. Thus, it
is hypothesized that the wind—evaporation-SST feedback may be responsible for the growth of the SAOD
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events linking southern extratropics and equatorial Atlantic variability via surface net heat flux anomalies.

1. Introduction

Tropical Atlantic variability exerts profound impacts
on atmospheric circulation, latitudinal migration of the
intertropical convergence zone, hydrological cycle, hur-
ricane development, and marine ecosystems (Giannini
et al. 2003; Xie and Carton 2004; Subramaniam et al.
2013; Patricola et al. 2014; Siongco et al. 2015). Thus, the
tropical Atlantic Ocean is often implicated in climate
variability over parts of the adjacent continents including
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the Guinea coast, the Sahel, and Brazil Nordeste. Studies
suggest that during the boreal summer [June-August
(JJA)], tropical Atlantic variability is dominated by the
equatorial zonal mode termed the Atlantic Nifio occur-
ring at the interannual time scale (Zebiak 1993; Chang
et al. 2006; Keenlyside and Latif 2007; Brandt et al. 2011).
The peak phase of the Atlantic Nifio in JJA is charac-
terized by a relaxation of the southeast trade winds and
zonally oriented anomalous warming along the climato-
logical mean axis of the cold tongue.

There are also two off-equatorial modes in the Atlantic
Ocean. One, peaking in boreal spring, is the interhemi-
spheric meridional sea surface temperature (SST) gradient
linked to cross-equatorial winds referred to as the Atlantic
meridional mode (Carton et al. 1996; Chang et al. 1997;
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Patricola et al. 2014). Fluctuations in the meridional mode
preceded Atlantic Nifio during certain periods (Servain
et al. 1999), although the two are generally regarded as
independent modes of variability. The other off-equatorial
mode—referred to as the South Atlantic subtropical dipole
(SASD)—manifests itself as subtropical SST anomalies off
the African coast associated with opposite phase farther
south off the coast of South America and is linked to
fluctuations of the St. Helena subtropical anticyclone
(Venegas et al. 1996, 1997; Haarsma et al. 2005; Colberg
and Reason 2007; Morioka et al. 2011). The SASD peaks
in boreal winter [December—February (DJF)] (Venegas
et al. 1997; Morioka et al. 2011) and the northern arm is
typically located away from the equator at about 15°-25°S
(Morioka et al. 2011, 2014). Thus, neither Atlantic me-
ridional mode nor the SASD coincides with the Atlantic
Niflo in either space or season.

However, the seasonally stratified observational analysis
of Nnamchi et al. (2011) suggests that, in some years,
equatorial warming anomalies characteristic of the At-
lantic Nifio may be associated with cooling of similar
magnitudes in the southwestern Atlantic off the Brazil-
Uruguay—Argentina coast during JJA. This SST anomaly
pattern marks the positive phase of the phenomenon
termed the South Atlantic Ocean dipole (SAOD). The
negative phase of the SAOD is characterized by a reversal
of the pattern, with cooling anomalies in the Atlantic Nifio
region [the northeast pole (NEP)] and warming over the
southwest pole (SWP) off the coast of South America.
Consistent with this, Trzaska et al. (2007) analyzed SST
anomalies simulated by a thermodynamic ocean model
and showed (using slightly different but overlapping spa-
tial domains) that a dipole structure peaking in July—
September is the dominant mode of SST variability in
the South Atlantic Ocean. Indeed, boreal summer pre-
cipitation at the Guinea coast of Africa that is traditionally
associated with the Atlantic Nifio (Wagner and Da Silva
1994; Giannini et al. 2003; Tokinaga and Xie 2011) is
actually correlated with SAOD-type SST variability
(Nnamchi and Li 2011, 2016; Nnamchi et al. 2013).

Previous studies implicate a wave-driven SST re-
sponse with perturbations of the St. Helena anticyclone
acting as an external factor in Atlantic Nifio evolution.
Liibbecke et al. (2014) discussed this in terms of wind
energy, which is one method of looking at dynamically
driven responses. Perturbations of the anticyclone are
driven by monsoonal heating over the adjacent conti-
nents and are amplified by local air-sea interactions
(Seager et al. 2003; Richter et al. 2008). A weakening of
the St. Helena anticyclone could induce large-scale cir-
culation anomalies associated the Benguela Nifio in
boreal spring and the Atlantic Nifio in JJA (Liibbecke
et al. 2010; Richter et al. 2010; Liibbecke et al. 2014).
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The mechanism causing the Benguela Nifio has been
attributed to dynamically driven propagation of Kelvin
waves from the equatorial region (Florenchie et al. 2003,
2004; Liibbecke et al. 2010, 2014), the localized effects of
winds anomalies (Richter et al. 2010), and variations in
cloud feedbacks (Huang and Hu 2007; Bellomo et al.
2015). On the other hand, the Atlantic Nifio is widely
believed to be dynamically driven because of the
Bjerknes feedback (Zebiak 1993; Keenlyside and Latif
2007; Libbecke and McPhaden 2013; Deppenmeier
et al. 2016), equatorial Kelvin waves (Brandt et al. 2011),
and meridional temperature advection from the tropical
North Atlantic Ocean (Richter et al. 2013).

The present study is motivated by a recent modeling
analysis focusing on the Atlantic Nifio region (Nnamchi
et al. 2015, hereafter N15), which concluded that ther-
modynamic processes can explain the SST anomalies
to a first order, contrary to the previous studies. The
possible role of the St. Helena anticyclone was suggested
but not shown. Earlier studies linking perturbations of
the anticyclone to the evolution of eastern equatorial
Atlantic SST anomalies show that the Benguela Nifio
and Atlantic Nifio are so strongly correlated that they
may be considered the same mode (Liibbecke et al. 2010;
Richter et al. 2010). The NEP region (0°-15°S, 10°E~
20°W) of the SAOD actually encompasses both Nifios.

Against the above background, here we address the
following question: What is the relationship between the
Atlantic Nifio peaking in JJA and ocean-atmosphere
anomalies over the South Atlantic extratropics? Liibbecke
et al. (2010, 2014) demonstrated that there is a robust
connection between the Atlantic Nifio and fluctuations
of the St. Helena anticyclone, which can act as an ex-
ternal factor in exciting equatorial variability that is
further amplified by dynamical ocean—atmosphere in-
teractions. Furthermore, an earlier analysis suggested
that the equatorial Atlantic Nifio may be a different
mode from the SAOD (Nnamchi et al. 2011). We note
here that the Atlantic Ocean is subject to large-scale
warming trends, giving rise to a weakening of the cold
tongue and Nifio-like warming pattern in historical ob-
servations and numerical simulations (Deser et al. 2010;
Tokinaga and Xie 2011), and this may obscure the in-
trinsic variability. Thus, how the data are preprocessed
will affect the characterization of the equatorial and
southern Atlantic SST anomaly types.

Here we show that the warming trend in historical
observations is not linear. We then account for the ob-
served warming trends and investigate the connection
between ocean—atmosphere interactions over equatorial
and southern Atlantic Ocean, using ocean reanalysis
datasets. We demonstrate that the equatorial Atlantic
Nifio may actually represent an equatorial arm of the
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SAOD, largely driven by surface net heat flux anoma-
lies. Thus, although using different spatial domains, the
present study provides observational evidence to sup-
port the analysis of N15, which was based on numerical
model experiments. Furthermore, we describe the large-
scale context that could condition the thermodynamic
air-sea interactions driving SST anomalies over the
equatorial Atlantic Ocean.

The rest of this paper is organized in four sections.
Section 2 describes the observational and reanalysis
datasets analyzed. Section 3 examines and compares the
indices of the Atlantic Nifio and SAOD in space, time,
and frequency domains. Section 4 describes the physical
mechanism—largely thermodynamic feedbacks that
could drive the SAOD-type SST anomalies. Finally, the
paper ends with concluding remarks in section 5.

2. Data and methods
a. Observational and reanalysis datasets

Three different observational SST datasets were an-
alyzed. These are the National Oceanic Atmospheric
Administration Extended Reconstructed SST (ERSST),
version 3b, available at 2° X 2° longitude—latitude grids
(Smith et al. 2008); the Hadley Centre Sea Ice and Sea
Surface Temperature, version 1, at 1° X 1° (Rayner et al.
2003); and the Kaplan extended SST, version 2, at 5° X 5°
(Kaplan et al. 1998).

Sea level pressure and 10-m zonal and meridional
wind datasets at 2° X 2° longitude-latitude grids were
taken from the Twentieth Century Reanalysis, 1871-
2012 (Compo et al. 2011). The depth of the 20°C iso-
therm, sea surface height, mixed layer depth, zonal
currents, meridional currents, and 0-300-m mean and
three-dimensional ocean temperature datasets were taken
from the European Centre for Medium-Range Weather
Forecasts operational Ocean Reanalysis System 3
(ORAS3) for the period 1959-2009 (Balmaseda et al.
2008). The ORASS3 is based on the Hamburg Ocean
Primitive Equation model at 1.0° X 1.0° grids with 0.3°
equatorial refinement and 29 vertical levels.

The fine equatorial grids of ORAS3 are important in
resolving the dynamical ocean—-atmosphere feedbacks in
the equatorial Atlantic Ocean. Nevertheless, to test the
stability of the results, we repeated the heat budget
analysis using version 2 of the German contribution to
Estimating the Circulation and Climate of the Ocean
(GECCO2) reanalysis available at 1.0° X 1.0° horizontal
grids and 50 vertical levels (Kohl 2015).

b. SST data filter

The leading empirical orthogonal function (EOF)
mode carries approximately 25% of the ensemble mean
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observed variance of the global SST anomalies, and
while there are some differences among datasets, they
all show warming trends in JJA. The spatial patterns
suggest that the trends are very pronounced over the
Atlantic Ocean in the individual datasets and their en-
semble mean (Figs. 1a—d). These plots are essentially
consistent with the trend maps of Deser et al. (2010)
determined based on annual datasets and suggest that
the South Atlantic extratropics may have warmed as
much as the equatorial Atlantic Ocean over the past
decades. For each dataset and the ensemble mean, the
time evolution of the leading EOF is plotted on the same
axis with the time series of the weighted basin-averaged
SST anomaly (WBA) over the South Atlantic Ocean
(Figs. le—h; the weights applied were determined as the
cosine of the gridpoint latitudes). The two time series
are strongly correlated (r = ~0.90), corresponding to R
of 0.81. This implies that the global SST anomalies
dominated by warming trends explain approximately
81% of the observed JJA variability of WBA.

As shown in Figs. 1le-h, the WBA is obviously com-
posed of some intrinsic interannual and decadal com-
ponents (see also Martin-Rey et al. 2014), in addition to
the long-term secular warming trend. However, the
variability of the WBA is not linear and therefore
merely subtracting the linear trends from the datasets
may not be an effective way to extract the intrinsic
variability. Thus, in order to isolate the intrinsic inter-
annual variability from the low-frequency component of
the WBA, we filtered the SST anomaly fields as follows:

SST;iltered = SST;aW - WBAlow.freq’ (1)
where SST' ;. and SST gjtereq denote the raw and filtered
SST anomaly datasets, respectively, and WBA oy freq 1S
the low-frequency component (determined as the 29-yr
running mean at every grid point) of the raw SST
anomaly datasets. Subsequent analyses are then based
on the filtered datasets, except where otherwise stated.
The 29-yr cutoff limit was chosen since the spectral co-
herence of the Atlantic Nifio and southern extratropics
is statistically significant up to around 29 years (see
section 3b).

c. Atlantic Nifio and SAOD indices

Following Zebiak (1993), the Atlantic Nifio (ATL3)
index was calculated as the domain-averaged SST anoma-
lies over the equatorial Atlantic sector (3°N-3°S, 0°-20°W).
The NEP index is averaged over 0°-15°S, 10°E-20°W and
the SWP over 25°—-40°S, 10°-40°W (Nnamchi et al. 2011).
The SAOD index is determined as

SAODI = [SSTA] SSTAlgyp )

NEP_[
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FiG. 1. (a)—(d) Leading EOF of observed global SST variability for JJA 1870-2013 and (e)-(h) the associated time
series. The ensemble mean is created from a bilinear interpolation of the three datasets onto 1° X 1° latitude—
longitude grids. The variance associated with the leading mode is indicated for each dataset and their ensemble mean
in (a)—(d). For (e)—(h), the blue or red color fill shows the time evolution of the EOF time series; the dashed black line
shows the WBA. The regression A of the EOF time series (as the independent variable) against WBA (as the
dependent variable) and their correlation coefficients r are shown in (e)-(h).
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where square brackets represent SST anomalies aver-
aged over the domains indicated by the subscripts.

3. Connections between the equatorial and
extratropical South Atlantic variability

a. Ocean—atmosphere anomalies associated with the
indices of the Atlantic Nifio and SAOD

The occurrence of the Atlantic Nifio can be inferred
from ocean—-atmosphere changes detectable in the sur-
face winds, ocean heat content (OHC), sea surface height
(SSH), and thermocline (e.g., Keenlyside and Latif 2007).
Thus, we first compare the variability of these parameters
associated with the Atlantic Nifio and SAOD indices
during JJA when both typically peak.

The regression of the filtered SST anomalies on the
ATL3 index from 1870 to 2013 during JJA reveals a
robust (P < 0.001) anomalous cooling response over the
SWP, in addition to the well-known anomalous warming
over the NEP (Fig. 2a), creating a dipole. This pattern is
reproduced by the SAOD index, with closely aligned
meridional axes of maximum and minimum SST anoma-
lies. Physically consistent with the SAOD-type SST
variability are large-scale ocean—atmosphere changes
characterized by near-surface low-pressure anomalies.
The thermocline, defined as the depth of the 20°C iso-
therm, deepens by about 4m in the eastern equatorial
Atlantic associated with an increase of approximately
436 MJ m > in OHC per unit volume integrated over the
top 300m (Fig. 2b). At the SWP where the OHC is
markedly decreased (~—376 MIm ), the thermocline
shoals by about —11 m. As a broad indicator of oceanic
circulation, the SSH exhibits a robust response at the
NEP but not at the SWP.

As shown by the significance limits in Fig. 2, the
SAOD-type SST, surface winds, OHC, SSH, and ther-
mocline anomalies are closely matched by those of the
Atlantic Nifio. The maximum SST anomaly hinges on
the African coast at around 10°S, consistent with the
increasing realization that the Atlantic Nifio is not purely
equatorial but is instead tied to the Benguela Nifio phe-
nomenon (Hu and Huang 2007; Liibbecke et al. 2010;
Richter et al. 2010).

How reliable are the results shown in Fig. 2 given that
the South Atlantic Ocean is often considered sparsely
sampled during much of the nineteenth and twentieth
centuries? As summarized in Table 1, earlier observa-
tional studies based on more recent periods with gen-
erally improved observational coverage consistently
show the occurrence of a dipole mode in the South At-
lantic Ocean. The dipole tends to appear as the second
EOF mode in raw datasets, whereas the first mode
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represents basin-scale uniform anomalies, possibly dom-
inated by warming trends. Thus, in those studies that the
linear trends were removed from the SST anomalies prior
to the EOF analysis, the dipole clearly emerges as the first
mode. A leading dipole mode has also been shown in
numerical modeling studies of the South Atlantic SST
anomalies (e.g., Colberg and Reason 2007; Morioka
et al. 2011).

As the ocean and atmosphere in the region are strongly
dependent, the intrinsic variability may be better under-
stood in a coupled framework. Not surprisingly, those
studies that analyzed the covariability of oceanic and at-
mospheric fields report a dipole structure as the leading
mode over the South Atlantic Ocean in observations and
numerical modeling analyses (Venegas et al. 1996, 1997
Haarsma et al. 2005; Trzaska et al. 2007; Nnamchi et al.
2011). While most of these previous studies are based on
monthly anomalies, the seasonally stratified analysis of
Nnamchi et al. (2011) reveals that, rather than a solitary
equatorial Atlantic Nifio, a dipole mode—the SAOD—
actually dominates the equatorial and South Atlantic
Ocean region during JJA.

Thus, although the SST at the SWP exhibits strongest
variability in DJF, it also has a secondary peak (which
appears slightly more defined in the filtered datasets) in
JJA that coincides with the primary peak of the Atlantic
Nifio or the NEP [Fig. 3; see also Fig. 2 of Nnamchi et al.
(2011)]. In fact, JJA is the only season during which the
magnitudes of the SST variability at both poles are
comparable, as expected for a dipole mode.

b. Coherence of eastern equatorial and southwestern
extratropical Atlantic SST anomalies

Spectral and composite analyses are performed to
further investigate the relation between the two poles of
the SAOD. The spectrum of the Atlantic Nifio is con-
sistent with a first-order autoregressive process [AR(1);
Fig. 4a], similar to N15. The SWP index has spectral
characteristics similar to the Atlantic Nifio, but with a
more pronounced decadal peak slightly exceeding the
AR(1) at 95% confidence level; this appears to enhance
the energy in the SAOD spectrum. Interestingly, the
cross spectrum shows that the Atlantic Nifio and SWP
are coherent at P = 0.001 on the interannual (2.0-3.3 yr)
and decadal (12.0-28.8yr) time scales (Fig. 4b). The
phase lag is generally close to *£180° where the co-
herence is robust, suggesting that the variability of the
eastern equatorial and southwestern subtropical At-
lantic Ocean tend to coincide with each other, but with
opposite sign. The analysis here focuses on the inter-
annual variability of these regions that peaks in JJA.
The decadal variability will be described in a sub-
sequent study.
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FI1G. 2. (a) Observed SST (color scale) and reanalysis surface wind (arrows) anomalies re-
gressed on the SAOD index (1871-2012). Blue (red) curves delineate regressed SST anomalies
statistically significant (P =< 0.001) on the ATL3 (SAOD) index; solid (dashed) white curves
show the axes of meridional maximum and minimum SST anomalies with respect to the ATL3
(SAOD) index. The black arrows denote regressed wind anomalies significant (P =< 0.05) on
both the ATL3 and SAOD indices. Boxes show the ATL3, NEP, and SWP domains.
(b) Equatorial (2°N-2°S, solid curves) and extratropical (28°-32°S, dashed curves) thermocline
depth (black), OHC (green), and SSH (gray) anomalies regressed on the SAOD index (1960-
2009). Dots indicate statistically significant (P = 0.05) regressions on both the ATL3 and
SAOD indices. All plots are based on JJA mean anomalies.

A composite analysis shows that the SAOD occurred
43 out of the 144 years (1870-2013) during JJA in all
three datasets analyzed, with comparable tropical
(+0.40K) and subtropical (—0.39K) mean SST de-
viations, but no solitary equatorial or subtropical event
was found. When we restrict the analysis to the 50-yr
period from 1960 to 2009 discussed in section 4, then the
SAOD occurred 18 in years; the mean SST deviations
remain largely unchanged (at ~0.40K), but there are

two solitary equatorial and one subtropical events
(Table 2). This suggests that the results may be affected
by the length of data analyzed or the observational pe-
riod used to construct the SST anomalies, which may
slightly weaken the anomalies at one of the poles.
Nevertheless, the SAOD clearly dominates irrespective
of the period analyzed or the cutoff limit used to filter
the datasets. From 1960 to 2009, the negative phase
occurred more frequently (in 11 years compared to the
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TABLE 1. Dipole modes determined by EOF analysis of the SST anomalies over South Atlantic Ocean in different observations,
reported in the previous studies indicated. Shown are the datasets, periods, and spatial domains analyzed by the various studies and how

the SST anomalies were preprocessed prior to the EOF analysis, as well as the EOF mode corresponding to the dipole SST anomalies and

the associated variance.

Reference Data Period Domain Anomalies Mode Variance (%)
Venegas et al. (1997) ICOADS 1953-92 0°-50°S, 70°W-20°E Raw 2 16.7
Sterl and Hazeleger (2003) NCEP-NCAR 1949-2000 0°-45°S, 75°W-45°E Detrended 1,2 28.5,16.7
Morioka et al. (2011) HadISST 19602008 10°-50°S, 60°W-20°E Detrended 1 204
Nnamchi et al. (2011) HadISST 1950-2006 5°N-45°S, 60°W-20°E Raw 1,2 30.7,13.2
Nnamchi et al. (2011) ERSST 19502008 5°N—45°S, 60°W-20°E Raw 2 13.7

positive phase, which occurred only in 7 years) with a
greater tendency to persist for some years, for example,
1976-78 and 1982/83. Overall, the frequency of the SAOD
determined by the composite analysis represents an oc-
currence every 3.3 yr during 1870-2013 and 2.8yr during
1960-2009. As shown in Fig. 4a, the SST spectra have
power consistent with an AR(1) process in the 2-5-yr band.

4. Physical mechanisms

a. Relative contributions of temperature advection
and heat flux to the SAOD evolution

While a robust connection has been established between
the eastern equatorial and southwestern extratropical

Atlantic SST anomalies, the mechanisms linking the
ocean—-atmosphere anomalies at the two poles and their
evolution are not yet clear. In this section, we explore
the governing physical mechanisms through the analysis
of the heat budget evolution that drives the SST
anomalies at both centers of action, using the more re-
cent period (1960-2009) with generally improved ob-
servational coverage. We use the SAOD index derived
from the HadISST observations and the ocean re-
analysis datasets, which are essentially constrained by
observations. The aim is to assess to which extent the
results are consistent with the modeling analysis of N15
based on the Atlantic Nifio index, having shown above
the similarities in other aspects of the observed Atlantic
Nifio and the SAOD.
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FIG. 3. Observed standard deviation of domain-averaged SST anomalies (1870-2013) over the (a),(d) ATL3, (b),(e) NEP, and

(c),(f) SWP. Curves are based on the ERSST (blue), HadISST (green), and Kaplan (red) datasets. The numbers are computed using
raw datasets in (a)—(c) and are based on filtered datasets in (d)—(f). Note that the magnitudes of the ATL3 and NEP variability are
similar to that of the SWP only during JJA as expected for a dipole mode.
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FI1G. 4. Comparison of the monthly spectra of the eastern equatorial and southwestern Atlantic SST anomalies,
1870-2013. (a) Solid curves are spectra of the SAOD (black), SWP (blue), and ATL3 (red) indices. Thin dashed
curves show 95% confidence level above the theoretical AR(1) spectra. (b) The black curve is the spectral co-
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from strong spectral peaks, 10% of each index time series was tapered prior to computing the spectrum. For display,
the spectral estimates were smoothed by three-point Daniell filter while the cospectrum was smoothed by a seven-
point filter. In both panels, the vertical bars show the interannual (2-5 yr) and decadal (10-31 yr) variations.

Generally, SST anomalies are driven by a combina-
tion of surface net heat flux and three-dimensional
temperature advection within the ocean mixed layer.
During the course of the year, the ocean mixed layer
depth (MLD) at the NEP typically fluctuates from a
minimum of around 40m in March to a maximum of
around 55m by September. On the other hand, the
MLD at the SWP exhibits stronger seasonality ranging
from about 37m in February to about 156m in Sep-
tember (Figs. 5a,b). These represent huge seasonal dif-
ferences in the evolution of the MLD at the two centers
of action. As a result, we explicitly account for the MLD
variations at each pole in computing the relative con-
tributions of the surface net heat flux and ocean tem-
perature advection in causing the SAOD-type SST
anomalies.

The time rate of the temperature change (tendency,
aT/dt) averaged in the ocean mixed layer may be written

as follows:
oT] _ O, oT aT
L 1 — _~met __ __ | — | +R
o pCh |"ax| [Yay] ™ ®)

where p and C,, are constants representing the seawater
density and specific heat capacity of ocean water (p =
10°kgm ™3 and C,, = 4 X 10°Jkg 'K ™), respectively;
T is the SST; and Q. denotes the net heat flux at the
ocean surface. The first term on the right-hand side of
the equation is subsequently referred to as the heat flux
term. The u and v are the horizontal ocean current ve-
locities, and the second and third terms on the right-
hand side of Eq. (3) represent the zonal and meridional

TABLE 2. Equatorial-extratropical South Atlantic Ocean SST anomaly types, 1870-2013 and 1960-2009. Classification is based on
+1.00 and must occur in all three datasets, and in addition, for dipole 0.50 must come from the tropics (NEP) and extratropics (SWP)
each. The number of occurrences of each SST anomaly type is denoted by N. Note that the NEP box encompasses both the Atlantic Nifio
and Benguela Niiio regions. There were 7 positive (1963, 1968, 1974, 1988, 1996, 1999, and 2008) and 11 negative (1967, 1976, 1977, 1978,
1980, 1982, 1983, 1992, 1997, 2004, and 2005) SAOD years from 1960 to 2009. In all SAOD years except 1999 and 1982, SAOD is preceded
by p’ <0 (p’ > 0) at the SWP, which represents 86% (91%) of the cases for the positive (negative) phase of the SAOD.

SST anomaly type Positive phase Negative phase N
Dipole [c(NEP) = 0.5, 0(SWP) = —0.5], N = 21 (7) [c(SWP) = 0.5, o(NEP) = —0.5], N = 22 (11) 43 (18)
Equatorial [c(ATL3) = 1.0, o(SWP) = 0.0], N = 0 (1) [0(ATL3) = —1.0, 0o(SWP) = 0.0], N =0 (1) 0()
Tropical [c(NEP) = 1.0, o(SWP) = 0.0], N = 0 (0) [c(NEP) = —1.0, 0(SWP) = 0.0], N = 0 (0) 0 (0)
Extratropical [c(SWP) = 1.0, o(NEP) = 0.0], N = 0 (1) [c(SWP) = —1.0, o(NEP) = 0.0], N = 0 (0) 0(1)
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FIG. 5. Composite evolution of the ocean mixed layer heat budget associated with the SAOD over (left) the
NEP and (right) the SWP in the ORAS3, 1960-2009. (a),(b) Climatological-mean annual cycle of MLD (solid blue
curve) and MLD during the SAOD year (dashed red curve). (c),(d) Anomalies of temperature tendency (977/d¢; solid
curve) and contributions from the advection and net heat flux terms (dashed curve). (e),(f) Anomalies of tendencies
due to meridional temperature advection (yellow curve), zonal advection (green curve), and net heat flux (dashed
purple curve). Dots indicate statistical significance at 95% confidence level. The composites are based on 10 positive
SAOD events from HadISST determined by +1.00 of the index in June corresponding to lag = 0 from 1969 to 2009;
these are 1963, 1966, 1968, 1971, 1974, 1988, 1996, 1998, 1999, and 2008. Note that as defined in Eq. (3), negative
(positive) anomalies of the advection terms denote warming (cooling) of the ocean mixed layer; positive (negative)
anomalies of the heat flux term represent warming (cooling) of the mixed layer.
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temperature advection terms. Res is a residual term that
represents the sum of unresolved physical processes
(e.g., diffusion, entrainment at the base of the mixed
layer, turbulent mixing, and high-frequency variability
not resolved by the monthly time series analyzed here).

In our calculations here, the vertical temperature advec-
tion term wd7/dz is also included in Res because of the
uncertainty often associated with its computation, and the
contribution of equatorial upwelling is likely reduced by
the meridional extent of the NEP (0°-15°S). Note that as
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defined here, negative (positive) anomalies of the advec-
tion terms denote warming (cooling) of the ocean mixed
layer; the reverse is the case for the heat flux term.

The depth of the MLD # is defined as the depth at
which ocean temperatures are 0.5 K lower than those at
the surface; thus, 4 changes in space and time. For each
variable, [-] is computed as the vertical average over the
ocean mixed layer:

1 h

[1=5 | = )
Using the ORAS3 dataset, we computed the composite
anomalies of the terms of Eq. (3) centered on June
(when the boreal summer peak SST variability at both
poles tends to occur; see Fig. 3) as the reference month
(lag = 0). While some earlier studies suggest that the
SASD peaks in boreal winter (e.g., Venegas et al. 1997;
Morioka et al. 2011), the present analysis is focused on
the SAOD, which peaks in summer, similar to the At-
lantic Nifio. Figure 3 [see also Fig. 2 of Nnamchi et al.
(2011)] clearly shows that the SWP dominates in boreal
winter, whereas the signal of the NEP or Atlantic Nifio is
comparatively small. As discussed in section 3a, it is only
in boreal summer that the amplitudes of the SST vari-
ability are of similar magnitudes in the southwestern and
eastern equatorial Atlantic Ocean.

The composite evolution of the anomalies of 97/d¢ is
closely reproduced by the sum of the surface net heat
flux and advection terms at both the NEP and SWP
during a typical SAOD year (Figs. 5¢,d). Thus, the re-
sidual term (Res, which includes the waT/dz term) is
quite small, especially at the SWP and prior to the peak
phase of the SAOD. At the SWP, the cooling tendency
reaches a maximum in March corresponding to lag —3
similar to the heat budget terms; a month later the
budget terms peak at the NEP. There is a 1-month time
lag between the sum of advection and heat flux terms
and 07/9t at the NEP, which could be due to the un-
resolved physical processes.

The initial cooling at the SWP is mainly attributable to
heat flux anomalies that (similar to 97/9¢) peak at lag —3
(Figs. Se,f). Once this peak is reached, the cooling begins
to reverse during the subsequent months. The peak
anomalies at the SWP coincide with and enhance the
seasonal deepening of the mixed layer. This both limits
the growth of the SST anomalies and increases their
persistence. Prior to the peak phase of the SAOD, the
warming tendency at the NEP is also driven largely by
heat flux peaking at lag —2. The advection terms are
generally of smaller magnitudes and become robust (at
lag —1) a month following the peak of Q,,; and coincide
with the peak phase of the SAOD event at lag = 0.
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To check the robustness of these results, we repeated
the heat budget calculations using the GECCO?2 re-
analysis for the same period: 1959-2009. As shown in
Fig. 6, the Q.. peaks a month earlier (at ¢t — 4) at the
SWP and is comparatively less robust at the NEP. Note
that while the ORAS3 has finer equatorial horizontal
grids, this could be compensated for by the higher ver-
tical resolution of the GECCO?2, which appears to better
resolve the seasonal cycle of the MLD. The result is that,
overall, the key features of the SAOD heat budget are
basically consistent in the two reanalysis datasets.

The time evolution of the anomalies at the NEP
clearly follows the pattern of those calculated based on
the Atlantic Nifio region described in the modeling
analysis of N15, which suggests that the SST anomalies
could originate to a large extent from thermodynamic
feedbacks and then coupled dynamics sets in to enhance
the characteristic Nifio-like spatial structure. Also, con-
sistent with N15, O,,.; anomalies play an important role for
the evolution of the SST anomalies at the NEP. We note
that there are some residual contributions (which may
include the woT/dz term, entrainment, and other unre-
solved physical processes not accounted for in our analy-
sis), that may in reality play significant roles in driving the
SST anomalies, especially in the NEP region. For instance,
vertical advection (including entrainment at the base of
the ocean mixed layer) constitutes a key element for the
seasonal development of the climatological-mean cold
tongue. As discussed by Burls et al. (2011), an anomalous
warming during the boreal summer will undoubtedly
modify the “climatological Bjerknes feedback” associated
with the cold tongue development. These unresolved
physical processes account for nearly half of the anom-
alous warming at lag —1 at the NEP in both the ORAS3
and GECCO?2 reanalyses. Nevertheless, a close exami-
nation of Figs. 5 and 6 shows that initial peaks in the
dT/dt term are clearly driven by the heat flux contri-
bution and that accounting for the residuals at both
poles should not change this.

There are no significant anomalies at either pole at
lag —5 corresponding to January (Fig. 7). In the fol-
lowing months, the positive SST anomalies evolve in-
crementally at the NEP to reach statistical significance
atlag —3 and a peak of approximately 0.50K at lag = 0.
On the other hand, weak positive SST anomalies persist
at the SWP until lag —4, after which there is a phase
change to negative values representing cooling that be-
comes significant at lag —2. The phase shift is charac-
terized by a rapid plunge of the SST anomalies at the
SWP under shallow mixed-layer conditions (for instance,
there is ~0.44 K change in just 2 months between lags —4
and —2). This is then followed by a more gradual cooling
(because of a rapid deepening of the ocean mixed layer
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FIG. 6. As in Fig. 5, but based on the GECCO?2 reanalysis, 1960-2009.

at a rate of ~20mmonth™"') until the peak of around
—0.50K is reached at lag = 0. In contrast, the mixed-layer
is generally shallow (<60m) and exhibits a compara-
tively weak annual cycle at the NEP, where dynamical
coupling is also stronger. These differences in basic state

and air—sea coupling mechanisms explain the rapid de-
crease of the 9770t and the heat flux terms at the SWP
2 months ahead of the peak anomalies at the NEP. From
the budget analysis, we see the strongest negative 07/9t
at the SWP at lag —3 or —4 and then the anomalous
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F1G. 7. Composite evolution of the domain-averaged SAOD-
type HadISST anomalies, 1960-2009. Dashed (solid) curve shows
the averages over the NEP (SWP) region. The composites are
based on the SAOD index of +1.007; dots denote statistically sig-
nificant (P = 0.05) anomalies.

tendencies weaken. This is consistent with a deepening
mixed layer and also a reduction in the surface heat flux.
The different evolution of the SST anomalies at the two
poles is obviously consistent with the variability of a7/dt.
In general, the SAOD heat budget shown here exhibits
an evolution pattern similar to that of the Indian Ocean
dipole in which the anomalies of 97/d¢ and the sum of
advection and heat flux at the eastern pole largely driven
by heat flux lead those at the western pole with stronger
dynamical coupling (Li et al. 2002).

b. Thermodynamic feedbacks associated with the
SAOD

The above heat budget analysis suggests that the
SAOD is largely driven by heat flux anomalies, rather
than mixed layer temperature advection. To better un-
derstand the physical mechanism, we analyze the evo-
lution maps of SST, O, and wind stress anomalies
leading to the peak phase of the SAOD in June. For
these maps, we analyzed the composites for the same
years used for the mixed layer heat budget calculations.

Figure 8 shows a progressive intensification of large-
scale cyclonic anomalies over the South Atlantic Ocean
from lag —4 to lag —2. The evolution appears better
represented in the GECCO?2 reanalysis, in which the
robust easterly perturbations at 30°-40°S at lag —4 are
complemented by equatorial westerly perturbations at
lag —2. Considered in context of the mean state and as
described in previous studies, the cyclonic anomalies
represent a weakening of St. Helena subtropical anti-
cyclone (Liibbecke et al. 2010; Richter et al. 2010;
Liibbecke et al. 2014). Unlike these previous studies,
however, here we emphasize the roles of O, anomalies
in the evolution of the SST anomalies similar to N15, but
using different spatial domains.
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In the NEP region, the SST anomalies are restricted to
the Benguela Nifio area and are not directly connected
to the Q. anomalies at lag —4 in both ORAS3 and
GECCO?2 reanalyses. Liibbecke et al. (2010) shows that
the Benguela Nifio SST anomalies may be driven by
remotely forced equatorial and coastal Kelvin waves,
suggesting possible contributions from ocean dynamics
at more regional scales. In the subsequent months, the
Ot anomalies strengthen at Benguela Nifio and extend
to the equatorial region, thereby intensifying the anoma-
lous warming. Driven by the wind stress and Q. anom-
alies, the progressive intensification of the SWP cooling
anomalies and Nifio-like warming in the near-equatorial
region creates a distinct dipole structure at lag —2. From
lag —4 to the peak phase of the SAOD at lag = 0, the axes
of maximum and minimum SST anomalies undergo about
10°-15° northward shift linked to changes in wind stress
and Q... anomalies.

As shown in Figs. 5 and 6, the effects of ocean dy-
namics become significant toward the mature phase of
the SAOD event at lag —1. The horizontal distribution
of the associated anomalies reveals that at this time lag,
the Qe dampens the SST anomalies, extending from
the southern extratropics to the equatorial belt (Fig. 8).
Thus, there is a switchover of roles such that as from
lag = 0, the equatorial dynamical coupling peaks and
drives the SST anomalies while the heat flux anomalies
cause a dampening effect. The phase shift at the NEP
close to lag = 0 may tend to disguise the critical roles of
the O, anomalies for the evolution of the SST anom-
alies during the preceding months while exaggerating
the importance of ocean dynamics. This is not to say that
ocean dynamics may not be important for the overall evo-
lution of the coupled system, but one would expect ocean
dynamics to be more important at regional scales such as in
upwelling zones or regions of sharp SST gradients.

c¢. A wind—evaporation-SST feedback hypothesis

On the annual mean basis, the low-level atmospheric
circulation over the South Atlantic is dominated by the
St. Helena anticyclone centered at around 30°S. To the
west, the SWP domain off the Brazil-Uruguay-Argentina
coast is characterized by northwesterlies while southeast
trade winds blow off the coast of Africa, in the NEP sector.
Superimposed on the mean conditions are marked annual
cycles in SST and zonal and meridional wind components
at both centers of action of the SAOD (Fig. 9).

We determine an index of the potential capacity of at-
mospheric variability to excite the ocean mixed layer
temperature anomalies at both poles during the course of
the year as the monthly interannual standard deviations of
the sea level pressure divided by the underlying MLD that it
perturbs. We do this because we assume that the wind
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variability and turbulent fluxes are proportional to the sea Previous studies show that the weakening of the
level pressure and that the mixed layer temperature is pri- ~ St. Helena anticyclone in boreal winter and spring months
marily driven by turbulent fluxes. This index generally ex- leads the Atlantic Nifio the following JJA. Liibbecke
hibits more variability at the SWP, especially between et al. (2014) show that while anticyclonic anomalies in
December and March with a peak in February, suggesting February—March are strongly linked to the negative
that the South Atlantic extratropics has the greatest po- phase of the Atlantic Nifio events in JJA for the positive
tential to excite SST anomalies during these months. phase, the associated cyclonic anomalies in April-May
Against this background, we outline a wind—-evaporation— are important. The authors explained these differ-
SST hypothesis through which the SAOD may originate. ences by the early onset of cold tongue development
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FIG. 9. Seasonal cycle over the equatorial subtropical South Atlantic Ocean, 1960-2009. (a) Observed climatological-
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associated with the negative events, whereas the
positive events are linked to delayed and suppressed
seasonal cold tongue development.

Here, we have shown that in addition to the equatorial
anomalies, the associated large-scale atmospheric fluc-
tuations can equally exert robust effects on the south-
western Atlantic Ocean causing opposite SST anomalies.
Consistent with Liibbecke et al. (2014), composite anal-
ysis reveals that weaker-than-normal sea level pressure
(p’ < 0) over the SWP during April-June preceded al-
most 86% of the observed equatorial Atlantic warming
and extratropical cooling cases in JJA from 1960 to 2009
(see Table 2). Also, almost 91% of the observed equa-
torial Atlantic cooling and extratropical warming cases
were preceded by anomalous high pressure (p’ > 0) at the
SWP during January-March. We repeated the analysis
using the NCEP-NCAR reanalysis (Kalnay et al. 1996),

and the results do not change, which adds to the robust-
ness of these findings. We can infer from this event-based
analysis that atmospheric anomalies at the SWP may
explain most observed SAOD cases.

As the anticyclone weakens, the mean northerlies
over the SWP also weaken. Blowing over comparatively
warmer tropical ocean, the mean winds will typically
tend to suppress evaporation on reaching the SWP be-
cause of the advection of warm and moist air from the
equatorial region. Thus, as the winds relax during the
evolution of the SAOD, evaporation is increased,
leading to surface cooling (Figs. 5-8). Over the NEP, the
prevailing southeast trade winds will tend to weaken
because of a weakening of the anticyclone. In the mean
state, this wind originates from the subtropics and tends
to enhance cooling on reaching the NEP due to subsidence,
evaporation, and equatorward advection (Seager et al.
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2003). Thus, a weakening of these trade winds associated
with the evolution of the SAOD will suppress evaporation,
thereby causing net surface warming at the NEP.

Our results here show that the SAOD may be induced
by atmospheric perturbations. On the other hand, ear-
lier studies have demonstrated that an amplification of
the zonal SST gradients (with cooling anomalies in the
cold tongue and warming in the SWP regions, re-
spectively) intensifies the anticyclone and associated
atmospheric circulations (Seager et al. 2003; Richter
et al. 2008). This suggests a two-way feedback between
the SST gradients and large-scale atmospheric anoma-
lies. The result is that SST anomalies at the two poles of
the SAOD appear to reinforce each other through the
interactions of the atmospheric anomalies with the
ocean mixed layer.

More detailed analysis of the wind—evaporation-SST
feedback outlined here is needed to confirm the impor-
tance of the mechanism for the evolution of the SAOD-
type SST anomalies. There is also a possible role for cloud
feedbacks. For instance, the modeling analysis of Bellomo
et al. (2015) shows that enhanced cloud feedbacks over the
Benguela Nifio region increases SST anomalies in the
Atlantic Nifio region. Thus, further studies are also nec-
essary to better understand the roles of cloud feedbacks on
radiation and evolution of the SAOD anomalies.

5. Concluding remarks

The equatorial Atlantic cold tongue is subject to
southern extratropical influence through perturbations
of the St. Helena anticyclone and consequently the
southeasterly trade winds (Robertson and Mechoso 2000).
Our analysis shows that atmospheric anomalies excited by
the perturbations of the anticyclone may trigger the evo-
lution of an opposite phase in SST variability structure
between the eastern equatorial and southwestern extra-
tropical Atlantic Ocean (i.e., the SAOD). Event-based
analysis shows that fluctuations of the anticyclone account
for 16 of the 18 observed SAOD cases from 1960 to 2009.

Previous studies have shown that the evolution of SST
anomalies from the southeastern Atlantic Ocean (the
Benguela Nifio sector) linked to fluctuations of the
St. Helena subtropical anticyclone earlier in the year is
associated with the equatorial Atlantic Nifio during the
boreal summer (Huang and Shukla 2005; Hu and Huang
(2007); Lubbecke et al. 2010; Richter et al. 2010). In-
deed, the Atlantic Nifio is not purely an equatorial
phenomenon as the SST anomalies are typically ori-
ented toward the southeastern Atlantic Ocean. Our
analysis here goes further to show that this near-equatorial
pattern is consistently tied to an opposite phase over the
southwestern Atlantic to the point that the two may be
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regarded as parts of the same climate mode—the SAOD,
of which the Atlantic Nifio is essentially the equatorial
manifestation.

Ocean mixed layer heat budget shows that the SAOD
is largely driven by the surface net heat flux partly
controlled by (stochastic) atmospheric perturbations
and possibly the systematic evolution of the wind-
evaporation—-SST feedback. Ocean dynamics seems to
play a secondary role and is more important over the
near-equatorial pole, particularly toward the mature
phase of an event when heat flux dampens rather than
drives the SST anomalies, a situation that may exag-
gerate (disguise) the roles of ocean dynamics (heat flux)
in the overall evolution of the anomalies. Although
there are several important processes such as vertical
advection, entrainment at the base of the mixed layer,
Ekman transport, and turbulent mixing (see Sterl and
Hazeleger 2003; Haarsma et al. 2005) not accounted for
in our analysis, the inclusion of these terms should not
change the leading role of heat flux in driving the
SAOD-type SST anomalies in the early part of its devel-
opment. Furthermore, questions remain on the reliability
of the reanalyses analyzed here because of possible biases
in the models used to construct them and poor observa-
tional coverage of the South Atlantic Ocean. Despite these
caveats, our results support the modeling analysis of N15
(which shows that the equatorial Atlantic SST anomalies
are largely driven by the surface net heat flux anomalies
consistent with a first-order autoregressive process) by
describing how the equatorial anomalies form a part of a
large-scale phenomenon, that is, the SAOD, originating
from stochastic atmospheric perturbations from the
southern extratropics.

Consistent with the foregoing discussion, previous stud-
ies based on purely thermodynamic ocean-atmosphere
interactions (as present in the so-called slab ocean—
atmosphere coupled models) identified a dipole structure
as the leading mode of SST variability over the South
Atlantic Ocean (Haarsma et al. 2005; Trzaska et al. 2007).
A comparison of Figs. 2-4 of Haarsma et al. (2005) clearly
shows that the dipole structure does not change much
when the same atmospheric model is coupled to 1) the full
ocean dynamics, 2) a 50-m deep passive thermodynamic
ocean model, or 3) a thermodynamic ocean model in
which Ekman transport, wind-induced mixing, and
varying mixed layer depths are represented. However,
the authors argue that the spectrum of the leading di-
pole structure in the slab model is more ‘‘red’’ because
of the absence of the temperature advection terms. Ad-
vection may enhance the SST variance in the equatorial
region (Nnamchi et al. 2015), although the southerly dis-
placement of the anomalies in Haarsma et al. (2005) also
applies to the fully coupled configuration of the model.
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As shown in a seasonally stratified analysis [see Fig. 2 of
Nnamchi et al. (2011)], the northern pole reaches the
equatorial belt only in boreal summer; as would be ex-
pected from the northernmost migration of the St.
Helena anticyclone in this season. Thus, the mean an-
nual cycle may be crucial for the observed seasonal
fluctuations of the northern pole, and Burls et al. (2011,
2012) discussed this in terms of ocean dynamics. The
slab models in which the mean annual cycle of the ocean
heat transport is constrained by observations may
therefore capture the boreal summer peak of the dipole
structure (Trzaska et al. 2007).

There is robust coherence between SST anomalies
over the eastern equatorial and southwestern extratropical
Atlantic at the interannual and decadal time scales. The
respective regions may be useful for the deployment of
observational platforms for targeted measurements of
ocean—atmosphere features. Our analysis shows that the
Atlantic Nifio and SAOD indices may be used inter-
changeably for most applications. While focused studies
within each individual region may be key to under-
standing detailed physical processes controlling the
anomalies, the SAOD index that better resolves some
decadal variability appears more suited for the analysis
of long-term ocean-atmosphere variability. Further
work is needed to understand the mechanism respon-
sible for setting the seemingly robust decadal peak of
the SAOD. More studies are also needed to determine
how the evolution of ocean-atmosphere anomalies over
the South Atlantic extratropics described in this study
may enhance seasonal climate predictions in the tropical
Atlantic region. In addition, understanding the relation-
ship of the SAOD with Atlantic Niflo [and SASD, which
has been shown to be related to the Pacific El Nifio
(Kayano et al. 2013; Rodrigues et al. 2015)] may provide a
new insight into the connection between climate vari-
ability over the tropical Atlantic and Pacific Oceans.
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